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1 (i) Show that the equation

2 sin2 x = 5 cos x − 1

can be expressed in the form

2 cos2 x + 5 cos x − 3 = 0. [2]

(ii) Hence solve the equation

2 sin2 x = 5 cos x − 1,

giving all values of x between 0◦ and 360◦. [4]

2 The gradient of a curve is given by
dy

dx
= 6x − 4. The curve passes through the distinct points (2, 5)

and (p, 5).
(i) Find the equation of the curve. [4]

(ii) Find the value of p. [3]

3 (i) Find and simplify the first four terms in the expansion of (2 − x)7 in ascending powers of x. [4]

(ii) Hence find the coefficient of w6 in the expansion of (2 − 1
4
w2)7

. [2]

4 (i) Use the trapezium rule, with 4 strips each of width 0.5, to find an approximate value for

ã 5

3

log
10
(2 + x) dx,

giving your answer correct to 3 significant figures. [4]

(ii) Use your answer to part (i) to deduce an approximate value for ã
5

3

log
10

√
2 + x dx, showing your

method clearly. [2]
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The diagram shows parts of the curves y = x2 + 1 and y = 11 − 9

x2
, which intersect at (1, 2) and (3, 10).

Use integration to find the exact area of the shaded region enclosed between the two curves. [7]

6 The cubic polynomial f(x) is given by

f(x) = 2x3 + ax2 + bx + 15,

where a and b are constants. It is given that (x + 3) is a factor of f(x) and that, when f(x) is divided

by (x − 2), the remainder is 35.

(i) Find the values of a and b. [6]

(ii) Using these values of a and b, divide f(x) by (x + 3). [3]

7
A

E

F

B C

The diagram shows triangle ABC, with AB = 10 cm, BC = 13 cm and CA = 14 cm. E and F are points

on AB and AC respectively such that AE = AF = 4 cm. The sector AEF of a circle with centre A is

removed to leave the shaded region EBCF.

(i) Show that angle CAB is 1.10 radians, correct to 3 significant figures. [2]

(ii) Find the perimeter of the shaded region EBCF. [3]

(iii) Find the area of the shaded region EBCF. [5]
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8 A sequence u
1
, u

2
, u

3
, . . . is defined by

u
1
= 8 and u

n+1
= u

n
+ 3.

(i) Show that u
5
= 20. [2]

(ii) The nth term of the sequence can be written in the form u
n
= pn + q. State the values of p and q.

[2]

(iii) State what type of sequence it is. [1]

(iv) Find the value of N such that
2N

∑
n=1

u
n
−

N

∑
n=1

u
n
= 1256. [5]

9 (i) Sketch the curve y = 6 × 5x, stating the coordinates of any points of intersection with the axes.

[3]

(ii) The point P on the curve y = 9x has y-coordinate equal to 150. Use logarithms to find the

x-coordinate of P, correct to 3 significant figures. [3]

(iii) The curves y = 6 × 5x and y = 9x intersect at the point Q. Show that the x-coordinate of Q can be

written as x = 1 + log
3

2

2 − log
3

5
. [5]
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4722 Core Mathematics 2  
 

  
1 (i)  2(1 – cos2x) = 5cos x – 1 M1  Use sin2x = 1 – cos2x 
   2cos2x + 5cos x – 3 = 0    A.G.     A1 2 Show given equation correctly 
          
  
 (ii)  (2cos x – 1)(cos x + 3) = 0 M1  Recognise equation as quadratic in cos x  
        and attempt recognisable method to solve 
   cos x = ½  M1  Attempt to find x from root(s) of quadratic 
   x = 60o A1  Obtain 60o or π/3 or 1.05 rad 
   x = 300o A1√ 4 Obtain 300o only (or 360o – their x) and no  
        extra in range 
        SR answer only is B1 B1   

    6  

2 (i) ( ) xxxx 43d46 2 −=− + c M1*  Attempt integration (inc. in power for at  

     least one term) 
 
           A1  Obtain 3x2 – 4x (or unsimplified equiv), 
     with or without + c      
  y = 3x2 – 4x + c  5 = 12 – 8 + c M1dep* Use (2, 5) to find c 
                              c = 1 
  Hence y = 3x2 – 4x + 1 A1 4 Obtain y = 3x2 – 4x + 1 
 
 
 (ii) 3p2 – 4p + 1 = 5 M1*  Equate their y (from integration attempt)  
     to 5 
      3p2 – 4p – 4 = 0 M1dep* Attempt to solve three term quadratic 
  (p – 2) (3p + 2) = 0 
  p = -2/3   A1 3 Obtain p = -2/3 (allow any variable) from  
     correct working; condone p = 2 still present,  
     but A0 if extra incorrect solution 

   7  

 
3 (i)  (2 – x)7 = 128 –  448x + 672x2 –  560x3 M1  Attempt (at least) two relevant terms –  
      product of binomial coeff, 2 and x 
      (or expansion attempt that considers all 7  
      brackets)  
    A1  Obtain 128 – 448x 
    A1  Obtain 672x2 

     A1 4 Obtain –560x3 

 
 
 (ii)  –560 × (1/4)

3 = -35/4 M1  Attempt to use coeff of x3 from (i), with  
      clear intention to cube 1/4 
    A1 2 Obtain -35/4 (w

6),  
      (allow 35/4 from +560x3 in (i))  

    6  
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4 (i)  M1  Attempt y-coords for at least 4 of the  
     correct 5 x-coords only 
                                                   )7log5.6log26log2 ++  M1  Use correct trapezium rule, any h, to find  

     area between x = 3 and x = 5  
   M1  Correct h (soi) for their y-values  
                                             ≈  1.55       A1 4 Obtain 1.55 
 

 (ii)  B1√  Divide by 2, or equiv, at any stage to  
     obtain 0.78 or 0.77,  
                                ≈ ½ × 1.55   following their answer to (i)    
                                ≈ 0.78 B1 2 Explicitly use log √a = ½ log a on  
       a single term  

                        6                 

5    M1  Attempt subtraction (correct order) at any  
      point 
 = (3 – 9 + 30) – (9 – 1/3 +10) M1  Attempt integration – inc. in power for at  
      least one term 
 = 24 – 182/3 A1  Obtain ± (– 1/3x

3 + 10x) or 11x and 1/3x
3 + x 

 = 51/3 M1  Obtain remaining term of form kx-1 
 OR  A1  Obtain ± 9x-1  or any unsimplified equiv 

 [ ] [ ]3

1

3
3
13

1
1911 xxxx +−+ −  M1  Use limits x = 1, 3 – correct order &  

      subtraction 
 = [(33 + 3) – (11 + 9)] – [(9 + 3) – (1/3 + 1)] A1 7 Obtain 51/3, or exact equiv 
 = 16 – 102/3 
 = 51/3 

    7  

 
6 (i)  f(–3) = 0  –54 + 9a – 3b + 15 = 0 M1  Attempt f(–3) and equate to 0, or equiv  
      method 
                             3a – b = 13 A1  Obtain  3a – b = 13, or unsimplified equiv 
   
   f(2) = 35  16 + 4a + 2b + 15 = 35 M1  Attempt f(2) and equate to 35, or equiv  
      method 
                              2a + b = 2 A1  Obtain  2a + b = 2, or unsimplified equiv 
   
   Hence a = 3, b = –4 M1  Attempt to solve simultaneous eqns 
    A1 6 Obtain a = 3, b = –4 
 
 
(ii) f(x) = (x + 3)(2x2 – 3x + 5) M1  Attempt complete division by (x + 3), or  
      equiv 
    A1  Obtain 2x2 – 3x + c  or  2x2 + bx + 5, from  
      correct f(x) 
 ie quotient is  (2x2 – 3x + 5) A1 3 Obtain 2x2 – 3x + 5  (state or imply as  
      quotient) 

   9   

++××≈+ 5.5log25(logd)2(log 2
1

2
1

5

3

10 xx  
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5

3
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1

5

3
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1
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7 (i)  132 = 102 + 142 – 2 × 10 × 14 × cos θ M1  Attempt to use correct cosine rule in  
       Δ ABC 
              cos θ  = 0.4536 
   θ = 1.10  A.G.       A1 2 Obtain 1.10 radians  (allow 1.1 radians) 
       SR B1 only for verification of 1.10, unless  
       complete method 
  
 (ii)  arc EF = 4 × 1.10 = 4.4 B1  State or imply EF = 4.4cm   
      (allow 4 × 1.10) 
   perimeter = 4.4 + 10 + 13 + 6 M1  Attempt perimeter of region - sum of arc  
      and three sides with attempt to subtract 4 
       from at least one relevant side 
                   = 33.4 cm A1 3 Obtain 33.4 cm 
 
   
 (iii) area AEF = ½ x 42 × 1.1 M1  Attempt use of  (½) r2θ, with r = 4 and  
      θ = 1.10 
                   = 8.8 A1  Obtain 8.8 
   area ABC = ½ × 10 × 14 × sin 1.1 M1  Attempt use of (½)absinθ, sides consistent  
      with angle used 
                   = 62.4 A1  Obtain 62.4 or better (allow 62.38 or  
      62.39)  
      hence total area = 53.6 cm2 A1 5 Obtain total area as 53.6 cm2 

    10  

 
8 (i)  u5 = 8 + 4 × 3 M1  Attempt a + (n – 1)d or equiv inc list of  
      terms 
        = 20 A.G. A1 2 Obtain 20 
    
 (ii)  un = 3n + 5   ie p = 3, q = 5 B1  Obtain correct expression, poss  
      unsimplified, eg 8 + 3(n – 1) 
                B1 2 Obtain correct 3n + 5, or p = 3, q = 5  
      stated 
 
 (iii) arithmetic progression B1 1 Any mention of arithmetic 
 
 (iv) ( )( ) ( )( ) 1256311631216 22

2 =−+−−+ NN NN  M1  Attempt SN, using any correct formula   

      (inc ∑ (3n + 5) ) 
     M1  Attempt S2N , using any correct formula, 
   26N + 12N2 – 13N –3N2 = 2512        with 2N consistent (inc ∑ (3n + 5) ) 
   9N2 + 13N – 2512 = 0 M1*  Attempt subtraction (correct order) and  
      equate to 1256  
   (9N + 157)(N – 16) = 0 M1dep* Attempt to solve quadratic in N 
   N = 16 A1 5 Obtain N = 16 only, from correct working 
        
            OR: alternative method is to use n/2 (a + l) = 1256 
     M1  Attempt given difference as single  
       summation with N terms 
    M1  Attempt a = uN+1   
     M1  Attempt l = u2N  
     M1  Equate to 1256 and attempt to solve  
       quadratic 
     A1  Obtain N = 16 only, from correct working 

    10  
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9 (i)   M1  Reasonable graph in both quadrants 
    A1  Correct graph in both quadrants 
           
    B1 3 State or imply (0, 6) 
     
 
 
 (ii) 9x = 150   M1  Introduce logarithms throughout, or equiv  
      with log 9 
  x log 9 = log 150  M1  Use log ab = b log a and attempt correct  
      method to find x  
  x = 2.28  A1 3 Obtain x = 2.28 
 
     
 (iii) 6 × 5x = 9x M1  Form eqn in x and take logs throughout  
        (any base)   
   log 3 (6 × 5x) = log 3 9

x    M1  Use log ab = b log a correctly on log 5x or  
      log 9x or legitimate combination of these  
      two   
   log 3 6 + x log 3 5 = x log 3 9 M1  Use log ab = log a + log b correctly on log  
      (6 × 5x) or log 6 
   log 3 3 + log 3 2 + x log 3 5 = 2x M1  Use log 3 9 = 2 or equiv (need base 3  
      throughout  that line) 
   x (2 – log 3 5) = 1 + log 3 2 

   
5log2

2log1

3

3

−
+

=x   A.G. A1 5 Obtain 
5log2

2log1

3

3

−
+

=x  convincingly  

      (inc base 3 throughout) 

    11 

 
 


